
radically reducing the cost and emissions impact of chemical separations
TEAM:

Tom McDonald, Ph.D. and Zoey Herm, Ph.D.
Prior to joining Mosaic Materials as Chief Science Officer, Dr. Thomas McDonald was a graduate student in chemistry at the University of California, Berkeley, working under the guidance of Professor Jeffrey Long. His graduate work focused on the design, synthesis, and characterization of diamine-functionalized metal-organic frameworks as highly selective and energy efficient adsorbents for carbon dioxide. While at Berkeley, Dr. McDonald invented a new class of phase-change adsorbents for acid gas removal that Mosaic Materials is working to commercialize as its first product.
technology:
Critical need: 10% of global energy consumption is used for separations. The majority of chemical separations are carried out via energy-intensive distillations. New materials are needed to switch to low-energy adsorption-based processes, enabling up to an 80% reduction in energy use.

Relative energy use for separation technologies. Source: U.S. Department of Energy, Energy Efficiency and Renewable Energy report "Materials for Separation Technologies: Energy and Emission Reduction Opportunities."
Technology vision: Enable a radical reduction in cost and energy consumption for removing carbon dioxide and other impurities from high-volume commodity chemicals, including natural gas, biogas, and hydrogen, through the development and manufacturing of high-efficiency metal-organic framework (MOF) adsorbents.

Source: "Energy Use and Energy Intensity of the U.S. Chemical Industry." Lawrence Berkeley National Lab (2000).
Current state-of-the-art: MOFs have been demonstrated at the lab-scale for several separation and storage processes. However, the high costs of the ligands and solvothermal synthesis make scaling difficult.
Key innovation: Mosaic Materials is developing low-cost synthetic methods and high-efficiency sorption processes based on new, highly-selective sorbents developed in Professor Jeff Long’s group at the University of California, Berkeley.
Manufacturing challenges: Scale-up of synthesis and particle engineering to meet industry form factor and performance standards.
Competing technology: Zeolite, carbon, and other MOF-based sorbents and membranes are under development to address the same separation challenges.
Potential for impact: If successful, our new metal-organic framework sorbents will radically reduce the energy and cost required to produce a wide range of commodity chemicals. Our first technology, a solid-state separation unit for natural gas and biogas purification, has the potential to reduce OpEx costs by 50% and CapEx by 20% through significant reductions in heat and water consumption.
We're looking for:
- Technical collaborators (especially for process development/modeling)
- Funders
- Joint development partners
- Techno-economic analysis
- Team members - scientists, engineers, business, interns
Links: mosaicmaterials.com
Contact: tmcdonald [at] mosaicmaterials [dot] com
Antora Energy, Fervo Energy, Mosaic Materials and Visolis—four startups founded by Cyclotron Road fellows and alumni—received a total of $7.5 million in funding from a pair of Department of Energy offices as well as from the DOE’s Advanced Research Projects Agency-Energy (APRA-E) this month.